MacWilliams' Extension Theorem for bi-invariant weights over finite principal ideal rings
نویسندگان
چکیده
منابع مشابه
MacWilliams' Extension Theorem for bi-invariant weights over finite principal ideal rings
A finite ring R and a weight w on R satisfy the Extension Property if every R linear w -isometry between two R -linear codes in R extends to a monomial transformation of R n that preserves w . MacWilliams proved that finite fields with the Hamming weight satisfy the Extension Property. It is known that finite Frobenius rings with either the Hamming weight or the homogeneous weight satisfy the E...
متن کاملThe Extension Theorem for Bi-invariant Weights over Frobenius Rings and Frobenius Bimodules
We give a sufficient condition for a bi-invariant weight on a Frobenius bimodule to satisfy the extension property. This condition applies to bi-invariant weights on a finite Frobenius ring as a special case. The complex-valued functions on a Frobenius bimodule are viewed as a module over the semigroup ring of the multiplicative semigroup of the coefficient ring.
متن کاملMacWilliams' extension theorem for infinite rings
Finite Frobenius rings have been characterized as precisely those finite rings satisfying the MacWilliams extension property, by work of Wood. In the present note we offer a generalization of this remarkable result to the realm of Artinian rings. Namely, we prove that a left Artinian ring has the left MacWilliams property if and only if it is left pseudo-injective and its finitary left socle em...
متن کاملMDS codes over finite principal ideal rings
The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...
متن کاملConstacyclic Codes over Finite Principal Ideal Rings
In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2014
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2014.03.005